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(ECa) and penetration resistance expressed as cone index (CI) for soil compaction was investigated 
with Veris 3100 and Veris 3000 sensing technologies. The study was conducted at the research farm 
located near Williston, ND on a sandy loam soil (Sandy, mixed, frigid Entic Haplustoll).  

Measurements of soil ECa were taken using Veris 3100 guided by a parallel swathing light bar  
monitored with the Trimble Ag132 DGPS unit  providing spatial coordinates for each  measurement 
at shallow (0-30 cm) and deep (0-90 cm) depths. A Veris 3000  equipped with the GPS unit was also 
used to collect measurements of ECa and CI that were recorded in 2 cm intervals to a depth of 90 cm 
on a grid sampling system. The experimental plot area mapped with this technology was 
approximately 1.4 ha. 

The ECa data from both Veris 3100 and Veris 3000 exhibited similar spatial trends across the field 
that may characterize the variability of soil for a variety of important physical and chemical properties. 
The coefficient of variations of ECa from Veris 3100 and Veris 3000 were 19.2 and 11.3%, 
respectively. However, the averages of ECa measurements for Veris 3100 and Veris 3000 were 4.92 
and 3.31 mS/m, respectively. The ECa mean difference, Md between these two devices was also 
significantly different from zero (Md= 1.71 mS/m; t=34.23, n=138; pr<0.01). Geostatistical tools were 
used to evaluate spatial dependency and assess the overall soil variability. It was found that soil ECa 
and CI parameters were spatially distributed and presented weak to medium spatial dependency 
within the mapped field area. 

Further, ECa measurements from both sensors exhibited approximately log normal distribution and 
the CI values were normally distributed using probability distribution functions.  

The spatial data produced from this new direct sensing technology can be used as baseline for 
precision farming and making future management decisions.  
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Introduction 
Assessment and interpretation of spatial variability of soil physical and chemical characteristics 
are very important for precision farming and managing agricultural practices. Because of this, 
farmers need new, quick, reliable and inexpensive sensing technology to measure soil 
properties such as apparent electrical conductivity (ECa) and soil compaction that characterize 
soil variability in their fields. To meet this need, on-the-go sensors (electrical and 
electromagnetic sensors) have been developed and are available commercially that can take 
measurements continuously and provide detailed soil maps while traveling across a field 
(Mueller et al., 2003; Sudduth et al., 2003; Farahani and  Buchleiter, 2004; Sudduth and 
Kitchen, 2004; Sudduth et al., 2004; Adamchuk, 2005;  Akbar et al., 2005; and Farahani et al., 
2005). The aforementioned authors concluded that the on-the-go sensors were efficient and 
effective tools for soil mapping and assessing soil variability for precision farming. They also 
concluded that spatial data collected by this advanced technology can also be used as a 
baseline for precision farming and future planning management practices as well as identify 
possible problem areas in the field. 

With recent advancements in computer and sensing technology, spatial measurements of ECa 
and compaction have become quick, easy, and reliable for mapping and monitoring variations in 
these soil properties in both space and time.  Therefore, surveying agricultural fields for soil 
electrical conductivity (ECa) and cone index (CI) using Veris 3100 and Veris 3000 sensors 
(Veris Technologies, 2002) is considered one of the most accurate and powerful methods of 
characterizing  soil variability for a variety of important soil properties such as bulk density, 
particle size distribution, water content, salinity, and organic matter. 

Traditionally, the spatial variability of soil properties has been evaluated through classical 
statistics and through geostatistical techniques that verify relationships among several soil 
samples of a specific area or field, using the study of regionalized variables (Davis, 1986).  

Geostatistical analysis methods have proven to be useful for characterization and mapping 
spatial variation of soil properties and have also received increasing interest by soil scientists 
and agricultural engineers in recent years (Webster and Oliver, 2001; Corwin et al., 2003; 
Mueller et al., 2003; Corwin and Lesch, 2005). Geostatistics often consists of variography and 
kriging. Variography uses semivariograms to characterize and model the spatial variance of the 
data while kriging uses the modeled variance to estimate values between samples (Journal and 
Huijbregts, 1978).  

In this paper, we used Veris 3100 and Veris 3000 on-the-go soil sensors. A Veris 3100 sensor 
consists of six coulter electrodes, two of which introduce an electrical potential into the soil. The 
remaining four coulter electrodes are spaced to measure ECa over two approximate depths, 0-
30 cm (shallow) and 0-90 cm (deep). While, a Veris 3000 is a probe combined both a 
penetrometer and an EC sensor to measure CI and soil ECa (Veris Technologies, 2002).  This 
Veris technology offers soil ECa and CI mapping systems that can produce detailed and geo-
referenced soils maps for identifying and interpreting soil variability.   

The objectives of this study were to evaluate ECa and CI for identifying and quantifying soil 
variability, and to compare the two Veris sensors for their ability to estimate soil properties in the 
field.  

Geostatistics, descriptive statistics, regression analysis, and frequency distributions were 
conducted to examine soil ECa and CI variability at a field site in North Dakota. 
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Materials and Methods 
Site Description and Data Acquisition  
This study was conducted on a 1.4-ha, nearly level (2% slope) grassland field at the USDA-ARS 
Nesson Valley Research farm located approximately 23 miles east of Williston, ND (48.1640 N, 
103.0986 W). The soil is classified as Lihan sandy loam soil (Sandy, mixed, frigid Entic 
Haplustoll). The Lihan soil series consists of very deep, somewhat excessively or well drained 
soils that formed in sandy alluvium, glacio-fluvial, and eolian deposits that are in places over till 
or sedimentary bedrock (Soil Survey Staff, 2004).  

Sampling point locations (Fig. 1) were georeferenced using the Pro XRS Global Positioning 
System (DGPS) with differential correction from Omni STAR Inc and data of soil ECa and CI 
using Veris 3100 and Veris  3000, respectively, were collected in the early spring of 2005  prior 
to spring tillage. On April 12,Veris 3100 sensor was used to map the ECa at two depths (0-30 
cm and 0-90 cm) using a parallel swathing  monitored with the GPS unit  providing spatial 
coordinates for each ECa  measurement (Fig. 1).  A total of 410 sampling points were created 
and spaced at approximately 2.8 m and only shallow measurements (0-30 cm) were used in this 
study.  

On April 14, Veris 3000 equipped with the GPS unit was used to collect measurements of both 
ECa and CI that were recorded in 2-cm intervals to a depth of 90 cm. A total of 138 points were 
created approximately 7.6 m apart with a few points that were spaced at larger distances (10-14 
m).  

 
Fig. 1. Sampling points generated by both Veris 3100 and Veris 3000 for the experimental plot. 
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Description of Veris 3000 Profiler Model 
The Veris 3000 profiler sensing unit was manufactured by Veris Technologies in Salina, Ks. The 
profiler consists of a mobilized probe that measure both apparent electrical conductivity (ECa) 
and soil compaction (CI). The probe is designed to be pulled through the field by a vehicle 
(Veris Technologies, 2002). The power and hydraulic unit are used to insert the penetrometer 
into the ground to a maximum depth of approximately 90 cm. The maximum penetration force is 
approximately 5 MPa with the ECa-sensing tip to prevent overload force to other mechanical 
components of the unit. The soil penetration force is measured by a pressure transducer and 
soil ECa is measured by a sensor located directly above the penetrometer tip (Veris 
Technologies, 2002)  

The unit interfaces with the GPS and records readings and measurements of spatial 
coordinates, cone index, penetration speed, penetration depth, and ECa for each sensing cycle. 
Soil ECa is measured in milliSiemens per meter (mS/m), while penetration resistance (CI) as an 
indicator of soil compaction is measured in mega Pascal (MPa) (Veris Technologies, 2002).   

Description of Veris 3100 Model 
The Veris 3100 mapping sensor technology consists of six spaced rotating coulter electrodes 
mounted on a metal beam that can be pulled by any vehicle (Veris Technologies, 2002). The 
coulter electrodes 2 and 5 introduce an electrical potential in the soil. The remaining four 
coulters (1, 3, 4 and 6) are spaced to measure voltage drop and ECa over two approximate 
depths, 0-30 cm (shallow) and 0-90 cm (deep) based on the theory of Ohm’s equation.  

The unit interfaces with a differential GPS that provide geo-referenced readings of soil ECa. The 
soil ECa measured by this unit is in milliSiemens per meter (mS/m) (Veris Technologies, 2002). 

Further information regarding Veris 3000 and Veris 3100 sensors, their description, functions, 
features and operational mechanism is given by Drummond et al. (2000), Veris Technologies, 
(2002), and Mueller et al. (2003). 

Classical Statistics  
The descriptive statistics (mean, variance, coefficient of variation, correlation) and probability 
frequency distributions of ECa and CI soil parameters were carried out with SAS software (SAS 
Institute, 2003) and the measured data were checked for normality of distribution using SAS 
probit procedure. The coefficient of variation, CV, has also been used for expressing variability 
on a relative basis (Eq. [1]) allowing the variability of different parameters to be compared. 

100% ×=
µ
σCV                       [1] 

Where σ and µ are standard deviation and arithmetic mean of the population, respectively. 

Further, the significance of the difference, Md, between the ECa measurements from both 
sensors Eq. [2]) was evaluated with a paired and unpaired-comparison t-test (SAS Institute, 
2003).  
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The Md in Eq. [2] measures the average difference between ECa measurements by Veris 3100 
and Veris 3000. An Md value equal to zero denotes no difference between the ECa 
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measurements sensed by both Veris machines. A student t-test was used to determine whether 
Md was significantly different from zero (SAS Institute, 2003).  

Spatial Statistics  
Geostatistical analysis (semivariance and kriged maps) was performed with Arc-Info (ESRI, 
2005). Measurements of ECa and CI were point-ordinary kriged to produce interpolated spatial 
maps using a 1 m2 grid pixel. Isotropy semivariograms were computed for each of soil 
parameters from both sensors using Arc-Info methods (ESRI, 2005). Spherical models were 
best fitted to the experimental or actual semivariance data that were interpolated using the 
kriging method. Semivariance is expressed in Equation [3] as described by Journal and 
Huijbregts (1978). 
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Where γ*(h)  is semivariance for the interval distance class, h is the lag distance, zi is the 
measured sample value at point i, zi+1 is the measured value at point i+h, and N(h) is the total 
number of pairs for lag interval h.  

The semivariogram represents the mean square of the increment between two points separated 
by the distance h. 

The spherical model that was best fitted to the experimental semivariance values for ECa and 
CI was defined in Eq.  [4] as:  
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and  

CCh += 0)(γ                                       for h > a                        [5] 

where C0 is nugget effect value, C is the spatial variance, a is the range, and h is the distance.  

The sum C0 + C is the total variance (sill) for the semivariogram.  The distance at which the sill 
value is reached, denoted as its spatial range, gives us information about the zone of the 
dependency influence. The range divides the sample into two groups. Observations that are 
located within the range are correlated or spatially dependent. This information can be used to 
estimate values at other points within that range. Observations beyond the range are 
independent observations. The slope of the semivariogram is an expression of the rate at which 
observations become increasingly independent with increasing distance until they approach or 
fluctuate around the sill. The range is often larger for a larger study area. The shape of the 
semivariograms reflects the nature of the overall distribution of the regionalized variables. 

 
 
 



 

6 

Results and Discussion 
The spatial variability of soil ECa and CI measurements from the Veris 3100 and Veris 3000 
systems were evaluated through both classical statistics and geostatistical techniques for 0-30 
cm soil depth. 

 
Analysis using Classical Statistics  
Descriptive statistics of soil ECa and CI parameters measured using Veris 3100 and Veris 3000 
sensors is given in Table 1. The CV of the ECa measurements from Veris 3100 and Veris 3000 
were 11.3 and 19.2%, respectively, and the CV for the CI parameter (Veris 3000 only) was 
18.24%. The use of classical statistics characterized by mean, variance, coefficient of variation 
and range for the ECa and CI soil properties allowed grouping of field variability into low to 
medium (Warrick and Nielson, 1980).  

Table 1 shows that CV for the ECa and CI were slightly higher than 10%, suggesting low to 
medium variability for the soil at this site. The Veris 3000 (n=134) sensor exhibited higher 
variation in ECa measurements compared to those of the Veris 3100 (n=410) due to their 
different sample sizes.  Further, the range values of both ECa and CI measurements resulting 
from Veris 3100 and Veris 3000 (Table 1) were small, reflecting low soil variability within the 
study area.  

Table 1. Statistical Summary 

 

 

Statistical Measures 

 

ECa-Veris 3100 

(mS/m) 

 

ECa  Veris 3000 

(mS/m) 

 

CI 

(MPa) 

 

 

Mean 

 

4.92 

 

3.22 

 

2.135 

Variance 0.31 0.38 0.152 

Coefficient of variation, CV (%) 11.3 19.20 18.24 

Range 2.4 2.95 2.4 

Minimum 3.70 1.96 1.04 

Maximum 6.10 4.91 3.44 

Number of observations 410 134 134 

 

 



 

7 

The mean difference, Md [Eq. 2], was also used to measure the average variation in ECa 
results between two sensors. The Md in ECa measurements between Veris 3100 and Veris 
3000 devices was significantly different from zero (Md= 1.71 mS/m; t=34.23, n=134; pr<0.0001). 
Further, Probit functions and probability frequency distributions (not shown) exhibited 
approximately log-normal distributions for the ECa property from both sensors while the CI 
resembles a normal distribution.  

 
Spatial Statistics 
 Spatial statistical methods (semivariograms and kriging) were used for characterizing and 
mapping spatial variation of ECa and CI soil properties. Interpolative spatial maps of soil ECa 
and CI measurements were created by point ordinary kriging procedure. Figs 2, 3 and 4 show 
the distribution of ECa and CI in the field at depth of 0-30 cm. 

 
Fig 2. Ordinary kriging spatial mapping for soil ECa measured using the Veris 3100 sensor. 
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Fig 3. Ordinary kriging spatial mapping for soil ECa measured using the Veris 3000 sensor. 
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Fig 4. Ordinary Kriging spatial mapping for soil cone index (CI) using the Veris 3000 sensor. 

 

Regarding to the spatial dependence aspect, the spherical model [Eq. 4] was most closely fit  
the  experimental semivariograms, presenting nugget effect, sill and  spatial range values to the  
ECa and CI soil parameters measured by Veris 3100 and Veris 3000 (Figs. 5, 6, and 7).   
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Fig. 5. Experimental and fitted semivariograms of soil ECa measured by the Veris 3100 sensor. 

 

 

 
Fig. 6. Experimental and fitted semivariograms of soil ECa measured by the Veris 3000 sensor. 
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Fig. 7. Experimental and fitted semivariograms of soil CI measured by the Veris 3000 sensor. 

 

 

The semivarograms were constructed to assess whether the measured data of ECa and CI 
variables had spatial structure or dependency. These semivarograms represent the sill values 
which equal the total variance of the process (Table 2). The nugget effect and the range were 
also observed for all soil parameters and the fitted semivariance values increased as the 
distance increased then flatted when they reached the sill values (Figs. 5, 6 and 7). 

In order to find the distance of dependency of the spatially structured data, the range was also 
evaluated from the semivariogram results. Table 2 presents a summary of the geostatistical 
parameters nugget, variance, sill, proportion of structural variance and the range for the ECa 
and CI. The range of the semivariogram indicates the effective distance between samples 
considered to be independent from each other. The range for ECa as measured by the Veris 
3100 and Veris 3000 were 161 and 160 m, respectively. It is interesting to note that the range 
for ECa and CI parameters were almost the same.  The sill values were also close to each other 
for the ECa measurements from both sensors (Table 2); however, the nugget variances were 
considerably different for the ECa measurements. This might be attributed to different number of 
sampling points produced by each sensor (Table 1). 
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Table 2.  Semivariogram spherical model kriged parameters. 

 

 

Soil property 

 

Nugget 

(C0) 

 

Spatial 
Variance 

C 

 

Sill 

C0+C 

 

Structural Variance 

( ) 100
0

×
+

=
CC

CP  

 

Range 

a (m) 

 

 

ECa-Veris 3100 

 

0.070 

 

0.464 

 

0.533 

 

87 

 

160 

ECa-Veris 3000 0.243 0.283 0.525 54 161 

CI 

 

0.115 0.076 0.191 40 161 

 

 

The spatial range values (Figs. 3, 4 and 5) show that continuous sensor-based measurements 
of ECa and CI parameters were essential for proper characterization of soil variability and 
identifying contrasting areas in the field. The spatial structure of the data did not considerably 
vary between the sensors’ measurements and soil parameters and the range values of spatial 
dependency for these soil properties were almost identical (Table 2) using spherical models with 
a range of 160 m.  

In order to evaluate the spatial dependency of soil parameters, we used criteria similar to those 
of Everett and Pierce (1996) that indicated a strong spatial dependency if the proportion of the 
structural variance, P (i.e., P=C/ (C0+C), was less than 25%, to have a moderate spatial 
dependency if the proportion was between 25% and 75%, otherwise it has a weak spatial 
dependency.  The structural variance proportion, P, of ECa measurements from the Veris 3100 
was very high (87%) indicating a weak spatial dependency in the sampling area of the field, 
while the proportion of structural variance of soil parameters from the Veris 3000 were lower 
than that of Veris 3100 (40-54%) which characterized a moderate spatial dependency in the 
study area. 

Using both descriptive and spatial statistics indicated that the ECa and CI Maps produced using 
the Veris 3100 and the Veris 3000 clearly showed uniformity representing a small scale trend of 
variability in the field. The ECa from both sensors exhibited higher values at the western parts of 
the field and presented lower values with tendency of uniformity in the remaining area. The CI 
showed a different scenario where the majority of higher values were located at the north 
western area and parts of eastern area of the field.   

The findings from this study indicated the potential for using the Veris sensing technology for 
precision farming in order to understand and manage spatial variability of soil properties and 
also to identify contrasting areas within agricultural fields. 
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Correlation between Two Sensors’ Measurements 
 

Statistical analysis was performed to obtain correlation coefficients and develop regression 
relationships between the ECa measurements from Veris 3100 and ECa measurements from 
Veris 3000 and ECa and CI measurements from Veris 3000 (SAS Institute,  2003). A significant 
positive correlation (r = 0.51, p<0.0001) was found between the ECa measurements from both 
sensors.  A simple linear regression model was proposed for predicting ECa-Veris-3000 
measurements from those of ECa-Veries-3100 (Fig 8 and Eq.6).  

 

ECaVeris-3000 = 0.562 + 0.448ECaVeris-3100     r2 = 0.26     [6] 

On the other hand, a weak correlation coefficient  was found between CI as an indicator of soil 
compaction and  the  ECa measurements  for Veris 3000 (Fig 5). 
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Fig. 9. Correlation between ECa and CI  from Veris 3000.
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Summary and Conclusions 
New sensors’ based measurements of soil ECa and CI can provide important information to 
assess and examine spatial variability for precision farming.  Spatial data were collected using 
both Veris 3100 and Veris 3000 to investigate and evaluate spatial variability in ECa and CI for 
1.4 ha grass-alfalfa field at the Nesson Valley research site in North Dakota. Descriptive 
statistics, semivariance analysis, and point kriging were employed to assess the magnitude and 
spatial range of variability in the soil measured properties. Interpolated spatial maps for ECa 
and CI using a 1 m2 grid pixel may be used as a baseline for precision farming and future 
management decisions.  The soil ECa and CI variability was spatially structured and these 
maps had the potential of explaining the variability within the field. We also concluded from this 
study, that the ECa and CI maps have the potential to aid farmers with site-specific soil use and 
define problematic areas within their fields.  
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